SOLUTIONS DE L'INTERROGATION

13 octobre 2015

[durée : 1 heure]

Exercice 1

On note tr(M) la trace de la matrice M. On considère les sous-ensembles des espaces vectoriels suivants :

$$\mathcal{A} = \left\{ (x, y, z) \in \mathbb{R}^3 \mid (x+1)^2 - x^2 + 2y - z = 0 \right\} \subset \mathbb{R}^3$$

$$\mathcal{B} = \left\{ (x, y) \in \mathbb{R}^2 \mid (x-y)(x+y) = 0 \right\} \subset \mathbb{R}^2$$

$$\mathcal{C} = \left\{ M \in M_2(\mathbb{R}) \mid \operatorname{tr}(M) \ge 0 \right\} \subset M_2(\mathbb{R})$$

$$(\star) \qquad \mathcal{D} = \left\{ f \in C^0(\mathbb{R}) \mid x \mapsto f(x) - |x| \in C^1(\mathbb{R}) \right\} \subset C^0(\mathbb{R})$$

Pour chacun de ces sous-ensembles :

a) Déterminer, en justifiant, s'il est un sous-espace affine.

Si c'en est un :

- b) déterminer sa direction et un point de ce sous-espace affine;
- c) si possible, donner une droite affine de ce sous-espace affine.

Solution:

- \mathcal{A}) a) $\mathcal{A} = \{(x, y, z) \in \mathbb{R}^3 \mid 2x + 2y z = -1\}$ est un hyperplan affine, car c'est l'image réciproque de -1 par la forme linéaire $\phi(x, y, z) = 2x + 2y z$.
 - **b)** $\vec{\mathcal{A}} = \text{Ker } \phi = \{(x, y, z) \in \mathbb{R}^3 \mid 2x + 2y z = 0\}.$ Le point $\Omega = (0, 0, 1)$ est un point de \mathcal{A} car 2.0 + 2.0 1 = -1.
 - c) Nous avons (arbitrairement choisi) $\vec{v} = (1, -1, 0) \in \vec{\mathcal{A}}$ car 2.1 + 2.(-1) 0 = 0. Ainsi $\mathcal{D} = \Omega + \mathbb{R} \vec{v} = \{(\lambda, -\lambda, 1) \in \mathbb{R}^3 \mid \lambda \in \mathbb{R}\}$ est une droite affine de \mathcal{A} .
- \mathcal{B}) a) Le sous-ensemble \mathcal{B} n'est pas un sous-espace affine car il n'est pas stable par barycentre : $(1,1) \in \mathcal{B}$ et $(1,-1) \in \mathcal{B}$, mais $\frac{1}{2}(1,1) + \frac{1}{2}(1,-1) = (1,0) \notin \mathcal{B}$. Remarque : \mathcal{B} est la réunion de deux droites affines distinctes, il ne peut pas être un sous-espace affine.
- \mathcal{C}) a) Le sous-ensemble \mathcal{E} n'est pas un sous-espace affine, car il n'est pas stable par barycentre : $O = \begin{pmatrix} 00 \\ 00 \end{pmatrix} \in \mathcal{E}$, $I = \begin{pmatrix} 10 \\ 01 \end{pmatrix} \in \mathcal{E}$, mais $2O I = \begin{pmatrix} -1 & 0 \\ 0-1 \end{pmatrix} \notin \mathcal{E}$.

 Remarque : \mathcal{E} est un demi-espace fermé.

- \mathcal{D}) a) $f \in \mathcal{D} \Leftrightarrow \exists g \in C^1(\mathbb{R})$ telle que $f(x) |x| = g(x) \Leftrightarrow f(x) = |x| + g(x)$. En notant $|\cdot| \in C^0(\mathbb{R})$ la fonction $x \mapsto |x|$, $\mathcal{D} = |\cdot| + C^1(\mathbb{R})$, avec $|\cdot| \in \mathcal{D}$ et $C^1(\mathbb{R})$ sous-espace vectoriel de $C^0(\mathbb{R})$. Donc \mathcal{D} est un sous-espace affine de $C^0(\mathbb{R})$.
 - b) D'après la question précédente $\overrightarrow{\mathcal{D}} = C^1(\mathbb{R})$, et le point (fonction) $\Omega = |\cdot| \in \mathcal{D}$ convient.
 - c) Soit $\vec{v}(x) = x$, alors $\vec{v} \in \vec{\mathcal{D}}$ est un vecteur (fonction) non nul. Donc $\mathcal{D} = \Omega + \mathbb{R}\vec{v} = \{x \mapsto |x| + \lambda x \in C^0(\mathbb{R}) \mid \lambda \in \mathbb{R} \}$ est une droite de \mathcal{D} .

Exercice 2

On note $\operatorname{tr}(M)$ la trace de la matrice M, et $H_{\Omega,\lambda}$ l'homothétie de centre Ω et de rapport λ . On considère les applications suivantes entre espaces vectoriels :

$$\psi : \mathbb{R}^2 \longrightarrow \mathbb{R}^2, \qquad \psi = H_{(1,0),2} \circ H_{(0,1),-1}$$

$$\xi : \mathbb{R} \longrightarrow \mathbb{R}, \qquad \xi(x) = (x+1)^3$$

$$(\star) \quad \phi : M_2(\mathbb{R}) \longrightarrow \mathbb{R}, \qquad \phi(M) = \operatorname{tr}(M+I_2)$$

Pour chacune de ces applications :

- a) Déterminer, en justifiant, s'il s'agit d'une application affine.
- b) Si c'en est une, déterminer sa partie linéaire, et si possible sa nature.
- c) Est-ce un automorphisme affine? Si c'en est un, déterminer son inverse.

Solution:

- ψ) a) ψ est une application affine, comme la composée de deux applications affines.
 - b) ψ est la composée de deux homothéties de rapports 2 et -1, et comme $2.(-1) = -2 \neq 1$, ψ est une homothétie de rapport -2. Donc $\overrightarrow{\psi} = -2\mathrm{Id}$.
 - c) ψ est une homothétie de rapport $\lambda=-2$ non nul, donc c'est un automorphisme. L'application inverse de ψ est une homothétie de rapport $\frac{1}{\lambda}=-\frac{1}{2}$. Pour déterminer ψ^{-1} il suffit de déterminer le centre de ψ^{-1} , qui est le même que celui de ψ . $\psi(x,y)=-(1,0)+2\big(2(0,1)-(x,y)\big)=(-1,4)-2(x,y)=3(-\frac{1}{3},\frac{4}{3})-2(x,y), \text{ donc le centre de } \psi$ est $\Omega=(-\frac{1}{3},\frac{4}{3})$. Ainsi $\psi^{-1}=H_{(-\frac{1}{3},\frac{4}{3}),-\frac{1}{2}}$.
- ξ) a) ξ n'est pas une application affine, car elle ne préserve pas les barycentres : $\xi(-1) = 0$, $\xi(0) = 1$, $\xi(1) = 8$, et donc $\xi(\frac{1}{2}(-1) + \frac{1}{2}1) = \xi(0) = 1 \neq 4 = \frac{1}{2}\xi(-1) + \frac{1}{2}\xi(1)$.

 Remarque : \hat{m} eme si ξ est bijective, ce n'est pas un automorphisme affine.
- ϕ) a) On note T_{I_2} la translation par I_2 . Ainsi $\phi = \operatorname{tr} \circ T_{I_2}$ est une application affine, comme la composée de la forme linéaire tr avec l'application affine T_{I_2} .
 - **b)** $\overrightarrow{\phi} = \overrightarrow{\text{tr}} \circ \overrightarrow{T_{I_2}} = \text{tr, car tr est linéaire et } \overrightarrow{T_{I_2}} = \text{Id.}$
 - c) Comme $\dim(M_2(\mathbb{R})) \neq \dim(\mathbb{R})$, ϕ n'est pas un automorphisme.