

Licence 2<sup>e</sup> année Parcours Renforcé

2017-2018

M4 - Probabilités et fonctions

## Interrogation

28 mars 2018

[ durée : 1 heure ]



Les documents et les calculatrices ne sont pas autorisés.

## Exercice 1

On considère pour  $n \in \mathbb{N}$  la fonction  $f_n = \frac{nx}{1 + (nx)^3}$ .

- a) Étudier la convergence simple et uniforme de la suite  $(f_n)_{n\geqslant 1}$  sur  $\mathbb{R}_+$  et sur  $[\varepsilon,\infty[$  pour  $\varepsilon>0$ .
- b) Étudier la convergence simple et uniforme de la série  $\sum_{n\geqslant 1} f_n$  sur ces mêmes ensembles.

## Exercice 2

L'équation y''(x) = -y(x), sur tout intervalle de  $\mathbb{R}$  contenant 0, admet une unique solution qui vérifie les conditions initiales y(0) = 0 et y'(0) = 1, cette solution est appelée  $\sin(x)$ . Il existe également une unique solution qui vérifie les conditions initiales y(0) = 1 et y'(0) = 0, cette solution est appelée  $\cos(x)$ . On rappelle que la fonction exponentielle est la valeur de la série  $e^z = \sum_{k=0}^{\infty} \frac{z^k}{k!}$  $pour \ \forall z \in \mathbb{C}.$ 

- a) Montrer que  $\sin(x) = \sum_{k=0}^{\infty} \frac{(-1)^k x^{(2k+1)}}{(2k+1)!}$  et  $\cos(x) = \sum_{k=0}^{\infty} \frac{(-1)^k x^{(2k)}}{(2k)!}$  pour  $\forall x \in \mathbb{R}$ .
- **b)** Montrer la formule d'Euler  $e^{ix} = \cos(x) + i\sin(x)$  pour  $x \in \mathbb{R}$ .